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SIGNIFICANCE AND EXPLANATION

Consider nonlinear heat flow in a homogeneous bar of unit length of a
material with memory with the ends of the rod maintained at zero temperature
and with the history of temperature prescribed for time ¢t € 0. For such
materials the internal energy and heat flux are functionals (rather than
functions) of the temperature and of the gradient of temperature respectively.
Under physically reasonable constitutive assumptions for these, generally
nonlinear, functionals application of the law of balance of heat leads to a
nonlinear Volterra integrodifferential equation, derived in Section 6 (see
equation (6.4)), together with appropriate boundary and initial conditions,
which model the physical problem. This mathematical model problem, which can-
not be solved explicitly and which is difficult to analyse, can be transformed
by standard methods to the general nonlinear integrodifferential equation
given in the Abstract. The resulting kernels a and b can be expressed in
terms of the internal energy and heat flux relaxation functions which are
presumed to be known for the physical problem. The operators A and B are
nonlinear differential operators which incorporate the boundary conditions,
and the forcing term F depends on the given initial temperature
distribution, the given external heat supply, and the given history of
temperature. 1In previous studies it was either assumed that the operators

A and B are equal or that the kernel b =0, or both. The problem as
formulated in this paper appears to model the general physical situation more
accurately, although admittedly the experimental evidence for theories of heat

flow in materials with memory is rather sparce.

Under physically reasonable assumptions motivated by this physical
problem we establish existence of global solutions, followed by a rather
complete description of the qualitative behaviour of such solutions, including
boundedness and decay as t #+ ®; the approach to equilibrium states (other
than zero) as t + ® is also analysed. These results are obtained for the
abstract evolution equation (using techniques of monotone operator theory
combined with energy methods and the theory of Volterra operators), and then
interpreted and applied to the physical problem. A comparison with other

results in the literature is also given.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION
OCCURRING IN HEAT FLOW

8.0, Londen"’ and J. A. Nohel(Z)
1. Introduction and Discussion of Results. We study the nonlinear Volterra

integrodifferential equation

:—:+ Bu(t) + a*Au(t) + -g? (b*u(t)) ® F(t) a.e. on R -

u(0) = u, -
In (1.1) A, B are nonlinear operators, a, b and F are given functions
defined on [0,»), * denotes the convolution g*h(t) = ]: g(t-t)h(t)dT, and
u, is a given element. Under various assumptions, partly motivated by the
problem of heat flow in a material with "memory"” formulated and discussed in
Section 6, existence results are established, followed by Lz, boundedness,
and asymptotic results. These are then applied to the physical problem in
Section 6. From the abstract viewpoint the present study generalizes the
theory developed in [8] for (1.1) with b 20 (see further comments below);
the case b Z0 is the one which arises naturally in the mathematical model
for heat flow.

In order to state and discuss the existence results we follow [8] and

introduce the hypotheses common to Theorem 1 and 2 under the heading:
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General Assumptions

Let H be a real Hilbert space and W a real reflexive Banach space

satisfying
WCc He W (1.2) ‘

where W' 1is the dual of W. It is assumed that the injections in (1.2) are
continuous and dense and <w',w> = (w',w) for w' € H, w € W where <w',w
isthe value of w' @€ W' at wew and (°+,°) is the inner product of H.
We denote the norm in H by |°¢| and the norm in W by #§°J. Let
V: W+ (-»w,®] and ¢é: H+ (-»,#] be convex, lower semicontinuous (l.s.c.)
and proper functions and define
A=23y B=2 , (1.3)
. where 3y, 9¢ are the subdifferentials of ¢ and ¢ respectively (see e.q.,
‘~ (1) Then A and B are (possibly multivalued) maximal monotone operators
from W and H to W' and H respectively. Define 'H t &+ (~w,4 Dby

#H(u) = lim inf{¥v) : vew and |v-ul <r} . (1.4)
r+0 -

'H is automatically l.s.c. and "H is convex since ¢ 1is convex. % is
the largest l.s.c. function on H satisfying “H €y on W. We assume that

#H(u) = Y u) for uew . (1.5)

::j Let A, = avn, Ay is maximal monotone in H and, in view of (1.5), has the
‘ property

Aju<s Au for uew . (1.6)
: This follows from the implication: ue W, ve H and wﬂ(z) > tﬂ(u) +

(voz = u) for z € H==> Y(z) » Y(u) + <v,z = w0 for z € W when (1.5)

. holds. Note that if ¢ : H + (==,®] defined by }
":l’ -~ = “u)' uew -
Y VY(u)

- =+ ®, u e HW
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is l.s.c., then ¥ = vﬂ and (1.5) holds. Moreover, V¢ is l.s.c. if

A 14 V(u) = + ®,

lulse
The Yosida approximations A A of AH are defined for A > 0 by
LN A (1 - JA)' .‘Jx (1 + Mﬂ) H

see [1] for the properties of A A Relating Ax and B we assume there
exists B8 € [0,*) such that

(w,AAu) > -B(lwl2 + I\xl2 +1) for ue€wW, we€Bu Ae (0,1 . (1.7)
We will aliso require the compactness assumption
Por every K > 0, {u€e H : |¢(u)] + lu] €KX} is precompact in W . (1.8)
In particular, we assume D(¢) € W.

As regards the kernel a, we will require that the following conditions
are satisfied.
Conditions (a):

a(t) is locally absolutely continuous on [0,=) . (1.9)

For every T > 0 there is a K,r > 0 such that

v er?(o,mH), 4,4, e [0,

and
" [5 (a*o(s),v(s))ds < @ + a, max |fS w(DaTl, 0<t<r
= 0<s<t
imply

1/2 :
|f; vis)as| < x(a’? +a), 0ocecr , (1.10)
and
|l; (a*v(s),v(s))ds| <K (a + azz), o<t <T .

Note that if v e Lz(o,-rom) where T, < T satisfies the assumptions of
(1.10) on [0,'1'0], then v extended as 0 on ('ro +T] satisfies the same
conditions on [0,T). Thus, without loss of generality, the map T + KT can

be assumed nondecreasing.
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For classes of kernels a satisfying Conditions (a) see Proposition (a)
and Theorem (a) of [8]. Finally, regarding the kernel b we assume:
b(t) 1is locally absolutely continuous on [0,.%) . (1.11)
This concludes the general assumptions.

The first existence result is:

Theorem 1. Let the general assumptions (1.2) - (1.11) be satisfied. Further

assume that A = 9y is single-valued and D(A) = W. Then for every
F e wl;l([o,-);a) and Yy € D(¢) equation (1.1) has a solution u in the
sense:

(i) uec([0,=);w) ,

du 2
(ii) at e Lm([oo.)lﬂ) ’

=& 4+ bu) - at 2
(iii) F at (u + b*u) a*au € Lzoc

(iv) F(t) - g: (u(t) + b*u(t)) - a*Au(t) € Bu(t) a.e. t >0 .

([0,=);H) ,

Moreover,

(v) ]: Au(s)ds e Looc ((0,=);H) .

In the special case b 2 0, which is not excluded here, Theorem 1 was
proved in [8]. The present result, as well as Theorem 2 below, is a
generalization in the spirit of the remarks in (8, p. 717] in which the
operator A in (1.1) is replaced by A + P where P : H +H is a Lipschitz
mapping. However, in the present context the perturbation term %z (b*u) is
different and requires a different treatment in the proof which is sketched in
Section 2. Primarily affected is the proof of the analogue of Proposition 2.1
of [8]. A proof of a similar generalization was first given by Mr. M. J. Luo

as a part of a regearch seminar of the recond author at the University of

Wisconsin during 1979-80.
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We remark as in [8, p. 705) that by conclusion (i) of Theorem 1 the map
t + Au{t) is continuous into the weak topology of W' and a*Au is well
defined with values in W'. By (v) and a*Au(t) = a(0) [> Au(s)as +
a"(f; Au(s)ds), one also has a*Au € L;c(l+,ﬁ). However, under the
assumptions of Theorem 1 one cannot obtain estimates on Au in H.

Under suitable additional assumptions estimates on Au € L:)c( {0,=);H)
can be obtained. Then, as in [8), existence results can be proved in which
neither A nor B is required to be single~valued. We give such a result
under the type of compatibility restriction relating the operators A and
B which is used in the boundedness and asymptotic analysis for (1.1).

Theorem 2. Let the general assumptions (1.2) - (1.11) be satisfied with

W=H=Ww (thus ﬁﬂ = 9, AH = A, etc.). In addition, let
b(0) >0 (1.12)

and let there exist constants Y > 0, § > 0 such that

i + (v,0) - .1522)_ lv=ul? > §lvi? (1.13)

for v € Au, v € Bu. Then for every F € w;;; ({0,=);H) and

U, € D(¥) N D(9) equation (1.1) has a solution u satisfying u(0) = uy, u,

u' e I.ioc([o,.)m), and there exist v, w € I‘ioc([o'.”m with wv(t) € Au(t),

w € Bu(t) a.e. on 0 €t < e such that

:—:'* w(t) + atv(t) + -gz (b*u(t)) = P(t) a.e. (0 €t < = .,

A sketch of the prroofs of Theorems 1 and 2 is given in Section 2. Assumption
{1.13) can be replaced by the more general assumption (used in [8, Theorem 2]):
for each r > 0 there exists a number k(r) such that

k(r) (1 + |w]) > |vl for v eAu, we Bu, lul <r (1.14)

without affecting the proof of Theorem 2. To verify that (1.13) implies

(1.14) take k(r) = k(1 + r?), k, =~ max(& ', ¥§', 1) and consider the

0
cases |v| > 1, |vl €1 4in (1.13). We prefer using (1.13) as it arises
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naturally in the discussion of Lz, boundedness and asymptotic results for

L

solutions of (1.1) which will be presented next. Concerning Theorems 1 and 2
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we note that the question of uniqueness of solutions of (1.1) remains open,

I

even in the case b = 0.

’
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We next turn to a discussion of boundedness and asymptotics of

)

R A

solutions. To simplify the exposition we assume in Theorems 3 - 6 that the
operators A and B are single-valued, and consequently replace the
inclusion by equality in (1.1). In what follows we denote locally absolutely
continuous functions by LAC.

Theorem 3 Assume that in (1.1)

a, a' e L1(‘*) P (1015)
a is strongly positive definite on R+ ¢ (1.16)
b e tac(r’), ana (-1)%X)(¢) >0

(1.17)
a.e. on R (x = 0,1) ,
r e L2(=",n) , (1.18)
A =03y where V¥ : H *(-w,@] ig convex, 1l.8.C. proper , (1.19)
B:D(BJ)e H+H with (u,Bu) » <:|u|2

(1.20)
for some c¢ > 0, for every u € D(B)
u c:IuI2 + (Au,Bu) -~ 9%2_ IAu—uI2 > GIAuI2
for some u> 0 and co, $ satisfying c > Cqr §>o0, (1.21)
for every u € D(A) n D(B).

Let u Dbe a golution of (1.1) satisfying
u e LAC(if,D(A) N D(B)); Au, Bu € Lioc(i+,ﬂ) . (1.22)

a e 2t ,m, uwe e, mn Lo, .

.......
--------------------
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By definition the condition (1.16) is the same as the regquirement that

a(t) - a exp(-t) is positive definite on R for some a> 0. A conseguence

of (1.15), (1.16) is that (see [19, Lemma 4.2) and (10, Lemma 3.1]) for every

1

peurL (l+,H) and for every T > 0

Loc
f3 1aveter1%ae < w'ota, 4,m) (1.23)
where Q(a,$,T) = f: ($(t), a*¢(t))dat, and where u= a-1 lal 1+ +
L(R)
4c-1 fa'l 1+ It is important to obgserve that this constant u also
L (R)

appears in (1.21). Assumption (1.21) is formally the same as assumption
(1.13) in Theorem 2, but the constant Yy is now written in the form u::. It
should be noted that the requirement inf $(u) > ~e ig not imposed in Theorem
3 (compare (8], Theorem 4); thus 'rheor::H3 is new, even in the special case

b £ 0.

The assumptions (1.15) - (1.21) of Theorem 3 do not imply the existence
of solutions of (1.1) satisfying (1.22). However, if one algso requires that
a' e vato,ﬂ), that B = 3¢, where ¢ : H + (~®,%] is a convex, l.s.c.,
and proper function, that ass\mptions (1.7), (1.8) are satisfied, and that
Fe wl;l(n+,ﬂ), then Theorem 2 yields the existence of solutions u satisfy-
ing (1.22). The reader should note that a' e B [0, (1.15) and
a(t) > 0 (which follows from (1.16)), imply that conditions (a) of the
general assumptions are satisfied (see Proposition (a) in [8]). Theorem 3 is
proved in Section 3.

In order to state a boundedness result for "large" forcing terms F in
(1.1) (i.e. F not necessarily in Lz(l"',ﬂ)) we denote by Li(l+,u) the
clags of functions ¢ : R+ + H such that each ¢ is locally square

integrable and such that

2
sup f:_1 |¥s8)|“ds < » ,
tee< e
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e Theorem 4. Let the assumptions (1.15) - (1.17), (1.19) - (1.22) of Theorem 3

;j' be satisfied. In addition, assume that .
late)] € kt™Y, |b'(t)] <kt ° a.e. on (1,
(1.24) .
for some constants K, vV with v> 3/2,
Fe Li(l+,!!) (1.25)
Ju] € plau|, for some p > 0 and for every u € D(A) . (1.26)
Then
au e L2’ ,m (1.27)
uwe " ,m . (1.28)
If, in addition, B = 3¢ where ¢ : H + (-»,«], is convex, 1l.s.c. and
proper, then
2 anda muerim’,m . (1.29)

Theorem 4 is proved in Section 4.
The common conclusion of Theorems 3 and 4 is u € L-ki*.ﬂ). Comparing
the two results observe that the assumption (1.18) in Theorem 3 concerning -
F is weakened to (1.25) in Theorem 4. But in order to establish the
conclusions of Theorem 4 the decay rates (1.24) must be added to assumptions
(1.15) - (1.17), and assumption (1.26) is needed in addition to (1.21). 1In
the special case b 0 and B # A no analogue of Theorem 4 (also of Theorem
5 and 6) was considered previously.
Theorem 4 serves as a basis for the following asymptotic result.

Theorem 5. Let the assumptions of Theorem 4 be satisfied. In addition,

assume that assumption (1.25) is strengthened to

um [5_ Ir(nilar=o0 . (1.30)
t+e
Then
un ff lawoiar=o , (1.31) -
toe

PPN TP PPN S SRt S T ST SR Py
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lim Iu(t)' = 0 . (1032)
t+e

Theorem 5 is p:zoved in Section 5.

We next wish to consider the analogues of Theorems 3 and 5 for equation
(1.1) wvhen PF(«) ¥ 0, of importance for the physical problem discussed in
Section 6. To introduce the results proceed formally at first assuming that,
e.g., the assumptions of Theorem 3 are satisfied, except that (1.18) is

replaced by 1lim P(t) = F(w) exists. 1In addition, suppose that b(w) = 0

toe
and that u is a solution of (1.1) such that u(®) = lim u{(t) exists. Then
t4oo
the "limit equation™ asgociated with (1.1) is
Bu(®) + (ﬂ; a(s)ds)au(em) = P(w) , (1.33)

where j: a(s)ds > 0 (by assumption (1.16)). A result of Brézis and Haraux
(2] states that equation (1.33) has a unique solution u(®) for every value
F(®) in H (including 0), provided the operators A and B are sub-
differentials (of proper, convex l.s.c. functions: H + (-®,«]), and provided
at least on- of the operators is onto (this is the case for B satisfying
(1.20)).

It is easily seen that if u(®) is the solution of the limit equation
(1.33) and if u(t) satisfies (1.1) a.e. on R', then u(t) - u(«)

satisfies the equation

& (alt) = u(=®) + Bule) - Bu(®) + a*(Au(t) - Au(e)) +

(1.34)
%: (b*(u(t) - u(»))] = g(t) a.e. on l+ .
where
S g(t) = £(t) + (f: a(s)ds)Au(®) - b(t)u(w)
. (1.35)
" . £(t) = F(t) - F(») ,

B '.'_ *m TLena T
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ﬁt- The folloying analogue of Theorem 3 can b& proved by examining its proof in
2 Section 3 step by step.

Theorem 6. Let the assumptions (1.15) = (1.17), Db(=) =0, (1.19) be

satisfied. In addition, assume that

O
et

Bu = 3¢(u), ¢ : H +» (-»,®] ig convex, l.s.c. and proper , (1.36)

s
s

k]
AL

(1) £(t) = B(t) - F(=) e 2=, 0,

(1.37)
(11) b(t) e 2@, [; ats)as e 2"y .

Let u be a solution of (1.1) satisfying (1.22), and let u(«) be the

solution of the limit equation (1.33) such that assumptions (1.20) and (1.21)

hold with wu, Au, Bu replaced respectively by u - u_, Au - Au_, and

Bu - Bu . Then
(] ——————

(Au - Au(=)) e Lz(lt+,ll), (u - u(=)) e Lz(l+,ﬁ) n L, .

It should be observed that if F(w) = 0, then u(«) = 0 and Theorem 6
reduces to Theorem 3.

It is also clear that the boundedness result (Theorem 4) does not require
any analogue in the present context.

The following analogue of Theorem 5 can be proved by examining its proof
in Section 5 step by step.
Theorem 7. Let a, b satisfy (1.15) - (1.17), (1.24) and (1.37(ii)).
Agssume A satisfies (1.19) and let (1.20), (1.21), (1.26) hold with u, Au,
Bu replaced respectively by u = u(«), Au - Au(®), Bu - Bu(®) where u(=)

is the solution of (1.33). Let u be a solution of (1.1) satisfying (1.22)

and suppose lim f:_1 |P(T) - F(ﬂ)lzdt = 0. Then
t

0

lim |u(t) - u(®)| =0 , lim ]:_1 Iau(s) - Au(=)|?as = 0 .
tre tro
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We conclude the discussion of equation (1.1) with some remarks about the
very special case when B £ A. Define
ctt) =1+ [ atnar (cex) .
Then (1.1) with B = A can be written in the form
4 fu + ¢c*Au + b*u) @ F, u(0) = u, . (1.38)

dat

G(t) = u, + f; F(tdtr .

Integrating (1.38), equation (1.1) (B £ A) is equivalent to the nonlinear

Volterra equation
u+c*tAu+ b*u 3G . (1.39)

If k : [0,») » ﬁ+ is the resolvent kernel of b, uniquely defined (under

assumption (1.11)) by
k(t) + b*k(t) = -b(t) ,

and if
d(t) = c(t) + k*c(t), g(t) = G(t) + k*G(t) ,

then (1.39) is equivalent to the nonlinear Volterra equation

u(t) + a*au(t) 3 g(t) a.e. on R . (1.40)
This equation has been studied extensively in the present context. 1In
particular, existence (and also uniqueness) theory has been developed by S.-0.
Londen (13), Crandall and Nohel [9], Gripenberg [11], results on boundedness
and asymptotic behaviour of solutions of (1.,40) have been obtained by R. C.
MacCamy [15], S.~O. Londen (13], and particularly analogues of Theorem 3, 5, 7
with applications to a special case of the heat flow problem discussed in
Section 6, by Clément, MacCamy, and Nohel [5]. The existence, boundedness,
and asymptotic behaviour of positive solutions of (1.40) (when the data are
positive) was investigated by Clément and Nohel (3], (4]. The present study

can also be regarded as a generalization to (1.1) of some of these reaults

when B ¥ A.
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2. Proof of Theorems 1 and 2. The basic outline of the proof will follow

that of Theorems 1 and 2 in [8) which concerns the special case b =20 in
(1.1). Several of the technical aspects do however differ; the latter will be
emphasized.

Let AA be the Yosida approximations of Ay and consider the
reqularized problem associated with (1.1) (compare [8, (2.11)]):

du

A 4
uA(O) = uo .

An easy application of Lemma 2.1 of [8] with
d
P - - * - — *
G(u) = F @ - a*A,u - o (b*u)
yields the following analogue of Corollary 2.1 of (8]:

Proposition 2.1. Let the general assumptions (1.2) - (1.11) be satisfied.

et €> 0, A> 0 be fixed, Then for every F € Lioc(l+)n) and v, € D(¢)

the initial value problem (2.1) has a unique solution u, on (0,%) 4in the

gense
du
A 2 +
u, c({o,=);H), ac e Lbc(k +H)

+
u, € D(B) a. e. on R

+
u, satisfies (2.1) a.e.on R .

The next step is to obtain various a priori estimates for the solution
uy of (2.1) which permit first A + 0 for fixed €> 0, and then ¢ +0 in
(2.1). For this purpose we establish the following analogue of Proposition
2.1 of [8]; it is here where the technicalities of the proof differ,

Proposition 2.2. Let T > 0, D= 3%, ¢ = 3Y where ¢, Y: H * (~=»,« are

convex, l.s.c., and proper. Let a, B, ¢, © (0,#), T> 0, Fe w"'(o,'rm),

e p(d) N D(Y), a: [0,») + R, b: [0,#) + R Dbe given such that

Y

T R O T I I I AP PPy .




(1) &) > -co(lu|+1), ¥Y(u) > -co(lul+1) for uesHn ,

(ii) (v,w) > ulvl2 - B(le2 + |u|2 +1) for u€H, vecCu, webdu ,
(2.2)

(iii) a satisfies conditions (a), (iv) b satisfies (1.11) ,

Then there exists a constant C depending on luol, a, b, cg, T, O(uo),

Y(uo). g8, IFl {but not otherwise on 9, ¥, and not on a), such that if

1.1

w |
(1) wu, E% ¢ VoW eE Lz(O,T;H), u(0) = Y,
(ii) v(t) e cu(t), w(t) e pu(t) a.e. on (0,T) (2.3)

(111) s wie) + arvie) + & b)) = B(E) ace. on (Om

then

mx{f: I%:' (s)lzds, f;‘ Iw(s)lzds. a f: Iv(s)lzds, jated|

J9tute)) ], 1¥uien, 1[§ visras]} <c

for 0 <t<T,

Sketch of Proof of Proposition 2.2. The proof is similar to that of
Proposition 2.1 in [8]. 1In particular, to obtain the analogue of the estimate
(2.18) in [8] take the scalar product of (2.3) (iii) with v, integrate

over [0,t] and use (2.2) (ii) to obtain (compare with (2.14) in [8, p.
711]1):

Y(a(t)) - ¥u) + a [; Iv(s)]2as + jg (a*v(s),v(s))ds <€
-b(0) f; (u(s),v(s))ds - f; (b**u(s),v(s))ds + [S(F(s),v(s))as (2.4)
+ BUf Iwis)|%ds + I luts)|®ds + 1], 0 €t < T .
Define as in ([8]
gv(t) = max l]s v(s)ds| .
0<s<t

Using assumption (2.2) (i) and the estimate (see (2.17) (i) in [8])

-13=
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IIE (F(s),v(s))ds| € c g (t)

in (2.4) yields

a f: |V(l)|2dl + f: (a*v(s),v(s))as ¢ co(lu|+1) + Wu ) + c,g (t)
+ B[1 + f§ lw(s)|%as + [; lu(s)|2as) + |b(0)] | (vis),utenras)  (2.5)
+ |]: (v(s), b'*u(s))ds|] 0 <t <T .

BY ©Cq:/Cpsece Wwe denote constants which depend only on Iuol, a, b, Cor To

®(u ), V(u ), 8 and IFIl
0 0 w"'(o,'rm)

To estimate the last two terms in (2.5), integrate both by parts and

estimate to obtain

(b(0)] |[; (v(s),u(s))ds| + |[; (v(s),b'*u(s))as| <

3, () LIBEO) ] Ju(e)] + Ib(o)| [S lu'(s)las + W1 sup |u(s)|
L (0,T) 0<s<t ’

+ fu(o)} Wty + WU 1: ju'is)las) .
L' (0,T) L' (0,T) .

Substitution of this estimate into (2.5) yields (compare with (2.18) in [8])

a ]: Iv(s)|3ds + ]: (a*v(s),v(s))ds <

e, (1 + lute)] + j: lw(s)|2as + j; lu(s)}2as) (2.6)

+ o 11+ lute)] + I; lu'(s)laslg (t) , 0 <t <T .

The monotonicity of the maps t + hul + ]; Iw(s)lzds + l: Iu(s)lzds
L (Optlﬂ)
and ¢ + lal + ]: lu'(s)|ds used in conditions (a) and combined with
L (0,t;H)
(2.6) yields (compare with (2.19) in [8])
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1
g () € c, (1 + u(t)l + f£ 1wie)1%as + [E |uts)|2as)2
v 4 - 0 0
L (0,t,H)
(2.7)
o1+ ue)l + £ 1ueras), 0 <t < ..
L (0,t,H) 1
Next, from (2.3) (iii) i
[
w(t) = P(t) - u'(t) - a*v(t) = b(0)u(t) - b'*u(t) , ;
and using the known estimate (see (2.17) (ii) in (8]) l
|la*v(t)]| < cagv(t) ‘ i
[
we obtain :
lwte)) € c (1 + lu'(t)] + g (v) + sup Juln] . 1
0<1Ct k
Substitution into (2.7) yields (compare with (2.21) in [8] where the first r
term under the integral should be Iu'(s)lz)
1
g, (t) < cslfﬁ (Iu'(s)l2 + sup Iu(‘r)l2 + 4;';":(8))4131/2 .
0<1<s (2.8) I
+ogl 1+ [5luta)las), 0 <t <T . :
Squaring (2.8) and using ]
sup [u(n1? < (lu@)l + f3 lu'(nan? , -’

0<t<s

(S 1ermtas?® < ¢ 5 lu (8) ] %as
in (2.8) ylelds (compare with (2.26) in [8])
2 2 2
He) < o1+ f;' [u'(s)|%ds + f; (g, (s))%as), 0 £ <T , (2.9
The Gronwall inequality, gv(O) = 0, and the monotonicity of the map
e [t lu'(s)]2ds used in (2.9) imply (compare with (2.28) in [8])
o) e (1 + 5 lurisrl?as), 0 < <1 . (2.10) 1

We next estimate f; Iu'(s)lzda. Taking the scalar product of (2.3)

(iii) with u' and integrating over ([0,t] yields
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f: Iu'(s)lzds + &(u(t)) - O(uo) + f: (a*v(s),u'(s))ds
+ b(0) [T (uls),u’(s))as + [5 (b'eute),u’ (s))as (2.11)
< max |F(s)| f: |lu'(s)jds, 0 € ¢t <T .
0<s<t

Using (2.2) (i), the known estimate for |a*v(t)| in terms of g,(t), and

|b(0) I: (u(s),u'(s))ds + I; (b**u(s),u'(s))as| <

%f; lat(e)1%as + Ib(0)| [C lu(s)|®as +-} [t lu' (s)]%as

+ Ib'l21 j: lu(s) | 2as
L

in (2.11) gives (compare with (2.23) in {8])

[l 1%as < c (1 + (g (e)) [lure)las + lue)] + flus)?as)  (2.12)

The routine estimates |u(t)| <€ |u(0)| + ]: |a'(s)|ds, j: Iu(s)lzds <

K01+ (f lu'(8)1d8)?] used in (2.12) yield

2 2
f: Ju'(s)|“ds € ¢, + c14gv(t) ]: |lu'(s)]|ds + c15(1: la'(s)]ds)

13

<c,. + c14r§ gi(t) + (I: Iu'(s)lds)2] +c (1: Iu'(s)lds)2

13 2n 15
for any n > 0. Substitution of (2.10) gives, for n> 0 sufficiently small,
the final estimate

f: Iu'(s)lzds <c ]: |u'(s)|ds)2, o<t <T ,

16 * C17!
which is the same as (2.29) in [8]. The proof of Proposition 2.2 is concluded
exactly as in (8], proof of Proposition 2.1.

The proof of Theorems 1 and 2 is completed using Propositions 2.1 and 2.2
following the procedure in [8, p. 714-717). 1In particular, Proposition 2.2
applied to solutione of (2.1; yields the estimates (2.31) of [8], with (2.31)
(vi) replaced by

[: |F(s) - (u'&s) + a'Axux(s) + %; (b'ux(l)))|2dl <C

L4

T
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Keeping € > 0 fixed and letting A + 0 in (2.1), and using the estimates

Ty v
BRI 4 ¢

(2.31) in (8] and the compactness assumption (1.8) gives (2.32) of (8] with

(iv) replaced by

A AT A €

4

- 0 ™ — »

F (ul + eA, u, + a*a “x*af.“’“x”"'
n nn nn n

weakly in Lz(o,T:H), T > 0. Then the limit function u. satisfies (compare

with (2.33) in ([8])

d
—— * =
+ at (b “e) F

'y + + a*
uptw +ev, +atv,

2
[ ]
Ber Ver Ve e I"zo

+* +
(R /H), w (t) € Bu(t), v (t)e Ajuclt) ace. on R .
The remainder of the proof is now exactly as in [8]. In proving Theorem 2 one
needs to remark, as was already done in (1.14) Section 1, that the present

assumption (1.13) in Theorem 2 is a special case of assumption (1.12) in (8].

3. Proof of Theorem 3. Form the inner product of (1.1) with u and
integrate over [0,t] obtaining

luter}? _ 1%

= — + [5 (u,Bwar + [§ (u,a%awar

(3.1)
+ Q(u,t;db) = I: (u,F)dT, t e B

—

where

MMM L UL Nt SEE e v v
-

Q(u,t;db) = [o (u,u*dbldr, udb = BO)u(t) + [T b'(s)u(t-s)ds .

.o
:

Using (1.20), noting that by (1.17) Q(u,t;db) > 0 (see the identity (3.7)
below with £y = £, = u), and writing
2 2
il = £ luni®ac
(3.1) implies

clul: < tul 1PN + lal lataul + 2V . (3.2)

t2rh)

- ) '“< «® -~ . '_- . - o . " . - -
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By (1.23) la'hul <u 29/2 (a,Au,t), and therefore, from (3.2)

-1
/29/2 {a,Au,t) > chul, - IFl 2 4 (2lult)
L™ (R)

e 1? . (3.3)

0
Suppose that

lim lult = o (3.4)
tow

Recalling (1.18) and ¢ > ¢, (see (1.20), (1.21)), (3.3) and (3.4) imply
Qla,Au,t) > c:ululi, for t e R+ sufficiently large . (3.5)
To obtain an upper bound for Q(a,Au,t) form the inrer product of (1.1)
with Au and integrate over [(0,t]. Using (1.19) one obtains
v(u(t)) = ¥uy) + [0 (Au,BuldT + Q(a,Au,t)
(3.6)
+ f; (Au,u*db)ar = f; (Au,P)dT, t € r .
To estimate the last term on the left side of (3.6) we use the definition of
u*db and the identity (easily checked directly by differentiating both sides)

R =
f:(t".fz b')dt

| L9 2 1 2
-3 f:folf1(‘l') - fz(‘l‘-l)l b'(!)dld‘l’i-; ]:b(r)lf1(t)| art (3.7)

b

+ 3 foe-ninifar - B Eoe (01?2 + 1 01han,

2

ioc(l+,ﬂ), and where we take f, = Au, f, = u. Consequently

where f1, f2 eL
(1.17) and (3.7) imply
f; (Au,u*db)dt > -~ le)- IAu-uli . (3.8)
Using (3.8) in (3.6) yields
f: {(Au,Bu)dT + Q(a,Au,t) - M.‘,l)- lAu-uli <

(3.9)
Wuy) - Wult)) + Ml IF1 , te R .

R Ty




To establish the term - ¥Wu(t)) in (3.9) we argue as follows: Suppose

lult
lim sup = (3.10)
Lo IAult

From (3.10) and assumption (3.4) there exist sequences tn > ®-, %‘->o such

that

|I: (u(r),a*Au(n))atl < Il tal . Bul < enluli . {(3.11)
n L (R) n n

Using (1.20), (3.11), and Q(u,t;db) > 0 4in (3.1) yields

2 2

la,

lag | |
-g-lul: < ug + L Wl < g s, L R
n n n L (R ,H) n

which implies sup lul, < = and ue L2(e",m) , in violation of (3.4).
n n

Thus we may suppose that (3.10) is false, and
tul

€t
lim sup
tow IAuIt

< = ,

Therefore, there exists a constant K, independent of t, such that

+
Suppose next that
lim sup "L:-(‘fT)-L = e (3.13)
tore t
Using (3.12) to estimate the left-hand side of (3.11) yields
|[Su(n,a%u(miar] <xtal . . wmul . (3.14)
et Ot

Using (u,Bu) » 0, Q(u,t;db) > 0 and (3.14) in (3.1) gives

2
2 jul
JB(t)L < 0 + xlal 'A“lz + IFrt 2 + IAult, te R+a

2 2 AT 2", m
which violates (3.13). Thus there exists a constant K,, independent of

t, such that

+
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Since by hypothesis V¥ is bounded below by an affine function there exist
constants K,, Ky independent of t, such that making use of (3.15) in turn
implies that
+
- P(ult) < K, + 1t3nmlt . t€R (3.16)
which is the desired estimate for - Y(u(t)).

Returning to (3.9) and using (1.18), (1.21), (3.5), (3.16) yields

2 +
GIAuIt < K4 + xslhult , tEeRrR |,
where K40 Kg are constants independent of t. Thus

!' sup_ ft |au] dt < = (3.17)
ter
P But from (1.15) and (3.17) one has a*au € Lz(i+,ﬂ); hence (1.1) has the form

du
at

where Fy = F - a*Au € 3= +H) by (1.18)., Forming the inner product of

+ Bu{t) + b(0)u(t) + b'*u(t) = P (t), t e R (3.18)

(3.18) with u, integrating over [0,t], and using (1.20) yields

2
1g(t)13 - '“o'
2 2

+ ctul? + Q(u,t;db) < IF 1 _lul, teR . (3.19)
t 12l

Since Q(u,t;db) » 0, FP, € Lz(n+,ﬂ), standard estimates used in (3.19) imply

1

sup, f‘ lu(v)|2dr ¢ » . (3.20)
ter

Consequently, the assumption (3.4) is false and (3.20) holds.
Using (1.17) - (1.19), (3.20), and Q(a,Au,t) > 0 (by the positive
definitness of a), in (3.6) one has
f; (Au,Bu)dt < K lAul,_ - Wu(t)) + X,, t € R (3.21)
where Kg, K, are independent of t. But from (1.15), (1.18), (3.1),
(3.20), (u,Bu) + Q(u,t,ddb) » 0 follows that (3.15) and hence (3.16) hold
even if (3.20) is satisfied. Therefore by (3.21)

f: (Au,Bu)dT < K MAul_ + K, t € R (3.22)

8
for some constant Kg. From (1.21), (3.20) and Db(0) >0 follows

=20~
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2 +
[; (A\l'B“) > Ghult - 9, tenR ’
for some constant Kg independent of t, and this, together with (3.22)
gives
sup,_ f; IAulzdt < ® (3.23)
teR
Finally, returning to (3.1) and using f; (u,Bu)dt + Q(u,t;db) >0, (1.15),

(1.18), (3.20), (3.23) gives that u e L.(R+,a). This completes the proof of

Theorem 3.

4. Proof of Theorem 4. We require two technical lemmas for the analysis;
their proofs are given at the end of this section.

Lemma 4.1. let g : [1,%) + R satisfy

tVg(t) e L1701, ™ (4.1)
for some V > 3/2. Define
T™+T g 1
2 . 0 2 o . 2
¥g(Ty) = sup I"o“ [k_)jo(j;k,r g“(nan’2)%ax, 7, > 2, (4.2)

where the sup is taken over T @ {T : Ty €T < «}. Then

® 1=v
Lemma 4.2. let €, T, be given positive numbers and let f e L}oc(l*,n*).
Assume that 1lim sup [:_1 £(t)dT = », Then there exists T > T, and a
t+o
sequence tn +® as n + @ such that
tn
[t.p flmaT < [tn_,r flnay, Tt <t , (4.4)
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tn-T tn
| pp £(maT < e [P f(nar . (4.5)
‘ n 0 n
& The proof of Theorem 4 requires the following preliminaries. Fix Ty > 2
L such that
::. 8 c-co 12
:; max(ya(To), pyb,(To) < min(4 ' 3 «( ) (4.6)
ii where a, b' are the kernels in (1.1), p is the constant in (1.26), c is
the constant in (1.20), c, § are the constants in (1.21) with ¢ > cé, and
I s
e where w = -J%E-, ¥ is defined in (1.23); this choice is possible by (1.24)
" 2c
- 0
i and Lemma 4.1. Next choose € € (0,1] such that
- ae(gtp) < § , (4.7)
-1 1
2e(gp’w 2) < (c-co)u(2 (4.8)
vwhere we define g = |a| + plb'|, lal = [ la(s)las, |b'| = [ |b'(s)]ds.
k R R
o Choose T > 0, and a sequence tn + ® ag n + », guch that
“ 2 2
[ipiaul’as <, T et <, n=1,2,... , (4.9)
an < eﬂn' n= 1,2,00. (4.10)

where we define
t t _-T
2 n 2 2 n 2
« ftn-T |Au|“as, a [tn_T_To |au|“as (4.11)

These choices are possible by Lemma 4.2, and because we will assume
- lim gup f:_1 IAulzds = o (otherwise conclusion (1.27) of Theorem 4 holds).
t+o
In the proof of Theorem 4 we will consider the intervals I, =
[t,-T-1, t -T]. For each n take Ter such that IAu(th)l < €a . (To

see that such Tn exist, note that if not then |Au(T)| > eoh a.e. on I,

and as To > 1
2 2 2 2 2 2
: ea < fin |Au}“ds < a < € a

, where the last inequality follows from (4.10).) Define Th = th = T thus

T < Tn < T™+1 and




IAu(tn-Tn)l < Euh ’ (4.12)
t =T
nn 2 2 2
o —pop |Rul®as < &, (4.13)
n 0
*n 2 2. 2
[ |aul®as < (1+e)d . (4.14)
n n
Define the sequences of numbers Bn' bn' Yo B " 1,2,00., by
t t -T
2 n 2 2 n'n 2
B, = J, _p Iul®as, bl = [~ . lul"as , (4.15)
nn n 0
= e [, lui’as . (4.16)
<<t
n
Then using |ul € plAu] (assumption (1.26)) and (4.9), (4.10), (4.14) as

well as -rn > T, we have

Bn < p(1-|-t:)¢:n .
bn < t:pun .

and Yn < pcn .

(4.17)

(4.18)

(4.19)

We begin the proof of Theorem 4 by taking the inner product of (1.1) by

u and integrating over obtaining

[tn.'rnl tn]
2
Jual tn 'l'n) ] t

2
Iu(tn)l . fn
t -T

n n

2 - 2

t t
+ [ g (wurdblat = [T (u,paT .
nn n n

t
(u,Budat + [ " (u,a%Auldr
n n

(4.20)

To estimate the terms in (4.20) define w = x[t:n-‘rn, tn]u, n=12,cee,

where X is the characteristic function. Then

t
n

* =
tn-'rn(“’“ db)dr Q[“n' tn; db] + hn R

-23=

(4.21)
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where we define

—

o h = ]; -p (u(D), ]6 b'(1-s), u(s)ds)dr .
nn
To estimate h_  we first use (4.15), (4.18) to obtain
n. tn tn-Tn
] - ] []
e _p (u(D), [, oy ®'(T-8)u(s)ds)az] < B b |b'] < eplb’'la B . (4.22)
n n n 0
Then observe that by (4.2), (4.15), (4.16)
- tn tn-'l‘-'l‘o
1/, tato), [ b’ (T-s)u(s)ds)ar|
nn
-k'r-'l‘ 1
<8 (f,._ o | B I ®  |br(rs)u(s)|asar) 2
n n k=1 -(k+1)T-Tb
-k'.l'-'l' 1 tn =kT=-T 1 1
0 - 2 /2 0 2.%,.2 /2
< sn( [ 2 (In_(ka _p D' (1-8)|“as) (f & (e )71, lu(s)|“as)’2]“ax)
(£.23)
® t -kT=-T 1 1
n 0 - 2 /2 2 0y
<8 yn(ft gt L U erpp 107 ey 1288)2) %4’
e k’1 n 0
- x+(k+1)T 2. V2. ¥
- ann(f _1[ Z (Ix*kT (b* (v))2av)”212ax)"2
< B Y, ¥ (Tg) < pa By, (T)
where the last inequality follows from (4.19). Thus
lhnl < paan(elb'l + yb,('ro)) . | (4.24)
i; In order to bound the term in (4.20) with the kernel a we notice that
' by (1.23), (4.15)
: n tl'l
1/, _p (ul1), Aura(m))at| = [y (u (D), Au *a(®)dT+ g |
' (4.25)

_1/ 1/
242
< Bnl‘ Q (acﬁun:tn) + lqnl ¢

.t
- ot
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def ¢t tn-Tn
It —p (u(T), ]0 a(1-s)Au(s)ds)dt. To estimate g, we
n n

proceed as in (4.22) - (4.24). This obviously yields

where 9,

lg | € a8 [elal +y, (T))] . (4.26)
2 To complete the estimation of the terms in (4.20) we finally observe that by

R (1.25), (4.17),

h! def

=1 n
% sup o 1y Ly
n n n

(u,P)aT] < = ., (4.27)

o 0 B
8oyt

> ()

"" » ,l

Now use (1.20), the fact that Q(uw,, t,, db) >0 and (4.21), (4.24) - (4.27)

in (4.20) to obtain

a

)
2 /2
cﬁi <egaB + By Q/ (a,Au ,t )
(4.28)

T,

+ a B ly (7)) + oy,,(1)] + Ko + 2 ute 2 01? .
The relation (4.28) should be viewed as providing a lower bound for
Q(a,Au,,t; ). Our next purpose is consequently to obtain an upper bound for
the same quantity.
Form the scalar product of Au and (1.1), then integrate over

(t,~Tpe tple This gives

t

n (Au,Bu)drT + n (Au,Au*a)dt

t
wult )) - ylule =T )) + ]; —p e -
n n n n

(4.29)

RERS S waonooe:

t t
n . = (M
+ [ (uutabdar= [ 7 (Aw,P)aT .
n'n n'n

.
s Concerning the terms in (4.29) we observe at first that from (4.9), (4.13),
-4
- (4.14) follows upon estimating as in (4.21) - (4.24)
a .
I‘,.'
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t t t -T
n - = + n n n
¢ -p (AusAuta)ar Q(a,Au ,t ) f; -p (AU, J 7 o
n n nn n 0
tn-‘l'-'l'
+ fo a( ™s)Au(s)ds(dr (4.30)

> ola,Au,t ) - a:[e(ﬂ»e)lal +y, (1)1 .

Then observe that

t t t
n * = n n *h?
tn_,rn(hu,u db)at = b(0) [ (Au_,u )dt + Iy (Au_,u *b')at
t -T t =-T-T t
n nn n o,, b(0) n 2
+ ftn_Tn(Au(t), ey + [ b'(t-s)u(s)ds)dr > - === ftn_,rnlu-m ar

(4.31)

- uh[(1+e)bn|b'| + Yhyb'(To)] b
b(0) tn 2 2
- - .
2 ]tn_Tnlu-Aul dar an[pe(1+e)|b | + P (Tg)]

where the last step uses (4.18), (4.19). Note that the first inequality in
(4.31) follows from (1.17) and (3.7). By (1.25) we have

def

t
-1 n
K, sup & IIt (Au,F)dt| < » , (4.32)

-T
n n'n
Our last problem when estimating the various terms in (4.29) is to bound
the difference #(u(tn)) - W(u(tn-Tn)). Using (1.26), (4.12), (4.21), (4.32),

(u,Bu) » 0 and the fact that

t
sup a2 [®  (u,Auta)dr < ®
n ‘t =T
n nn

in (4.20)'gives sup 0;2 Iu(tn)l2 < ®» and so lim ogz Iu(tn)l = 0. But then,
n n-+»e
for some cn + 0,

-26-
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v(u(tn)) - Nu(tn.'rn” > K, = x1|u(tn)| - (Au(tn-'rn), u(tn-'rn))
2 2 2 .
> K, - €9 - pllm(t:n 'rn)l » “K, - ed = ped :

and so, for some constant K., if n 1is sufficiently large,
2 .
Wule ) - Kute -1 )) > X, - 208 . (4.33) X
Finally, inserting (4.30) - (4.33) into (4.29) and invoking (4.6), (4.7) (also )

recall that a * =) one obtains

\4
n [(Au,Bu) - 520—) |u-Au|2]dt + Q(a,Aun,tn) <-2§ a:

- t -T
. n n .
- (4.34)

. t
<2 (™ |aullar .

i 2 ‘e -1
. nn

We now have both a lower bound (4.28) and an upper bound (4.34) for

Q(a,Aun,tn). The lower bound does however contain the term I\1(t:“-"l‘,‘)|2
which must be estimated in terms of cn Bn. This we do in what follows. 3
Suppose for a moment that B: < m:. Then by (4.34), as Q(a,Aun,tn) >0,

and by the definition of w,

(.r-.'."'. .

t
n {(Au,Bu) -~ b(0) I\:i-AuI2 + czululz}dt
tn-'l‘n 2 0

t t
n [ 2 2 2 n 2
< Itn--rn{z |laul® + COU|‘1| At < § Itn.'rn|lu| dt ,

W N PTG

which violates (1.21). Thus
- 1/
2
an < w Bn (4.35)

Rt el A ek A AD B Ad by B $ 400 s e o
:ﬂ EL »

for n sufficiently large. But then 3

2 2 2 222 2 2 - /2 ::

' lute =T 11" < p"|Aule -7 )|" < p€'d < p€aBw . (4.36) 3
p

) The estimate (4.36) is now used in (4.28) to get

P |
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[ll-1Q(a,Aun,tn)]-1/2> c,B, + B [(e=c)) = & Y2
(4.37)
lec + o225 22+ ¥, (Ty) + oy, (T )] > c 8 .
for n sufficiently large where the last inequality follows from (4.6),
(4.8). Thus
Q(a,Aun,tn) > uc:q: . (4.38)

Finally use this lower bound for Q in (4.34). The result violates (1.21)
and so (1.27) follows.
By (1.26), (1.27) we have
verla' ,m . (4.39)
Then cbserve that as a,b' e L'(R") it follows from (1.25), (1.27), (4.39)
that
el m (4.40)
def

where F1(t) = F(t) - Au*a(t) - u*db(t). By (1.1)

u'(t) + Bu(t) = P (¢} . (4.41)

Form the scalar product of u and (4.41); then integrate over [t1,t2];

t,,t2 e K*; 0 < t,-t, € 1. This gives

late )12 - Jue )12 + 2 ftz(u Bu)dt = 2 Itz(u P, )at
2 1 ty t,

and so by (4.39), (4.40) and as (u,Bu) » 0,
lute )12 - Jute1? < x (4.42)
for some K > 0 independent of ty, tys But (4.39), (4.42) give (1.28).
Assume next that B = 3¢, multiply (4.41) by Bu and integrate over

{t,t] where t + ®» ig such that
n‘"n n
2 tn 2
f:_1lBu| ar < ftn_1|nu| at, 1<t <t (4.43)

{if no such t, exist then (1.29) follows) and where tn satisfies




L e [tn-z,tn-n, u( tn) € p(B) ,

(4.44)
IBu(tn)I €1+ inf |Bu(T)]| .

Here the inf is taken over Tt € {tltn-z <t -1, u(t) € D(B)). Then, by
(4.40), (4.43)
t

ftnlnulzdt <o . (4.45)
n

-1
O(u(tn)) - C(u(Th)) + 2

But by (1.28) and as B = 3¢

l’\l(t )l . (4.46)

flult ) - Hu(t)) > -2kl _ :

L (R ,H)

From (4.43) - (4.46) follows

t
[alul 17! S Mimal?ar < IBuCT )| <1+ inf IBu( D)

+
L (R ,H) n
tn-1 tn 2 }&
<1+ tn_zltuld‘t <1+ ([tn_1|nu| ar

from which the second part of (1.29) follows. To obtain the first part one
also recalls (4.40), (4.41).
PROOF OF LEMMA 4.1.
By (4.1) and as x > 1
v

I:ﬂt‘l‘ 92(v)dv < Ki(x + k'r)1-2 ? k= 0,1,2,000000 ’

for some constant K. Therefore

v Vo V- 1 " _
) U:ﬂt‘r gz(v)dv}/2< x/2 x"2 Vi1 + (1 *E)/z Ve r *xg)/z Ve eees) .

k=0
But x € T +T < 2T and so x 't > 27!, This together with v > 3/2 yields
b 2 1/ 1
X {f;tk'r g(v)av)2¢ K1x/2 v,
k=0
. for some constant Kys But then
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. T L 1 - -
* %Y ° g2viavid2ax <2 7 x"Vax = 0122V, 1+ =
. T 2+kT 1 ' 0 0
. 0 k=0 0
. from which (4.3) follows.
PROOF OF LEMMA 4.2.
;j Let N be any integer > e-1 and take T, such that
.‘ T, > NT, (4.47)
;i Let T + « be a sequence satisfying
- T
[, tate [l far, T <<t , (4.48)
(] n ¢

and suppose the Lemma does not hold. Then in particular

T
far> e [0 far
n ¢

T =T

n ¢

Tn.Tc-TO
(at least for some subsequence of (tn} which without loss of generality we

take equal to {Tn}) and so

T T
n n
cop p £AT> (v [P f£ar . (4.49)
n ¢ 0 n ¢
Por each n there exists t1n e [0,tn] such that
t1n )
[og g tav< [ fae , T +71 CtcT . (4.50)
c 0 in ¢ 0

Clearly limt = @ By (4.49), (4.50)

née

t1n 1h

/ £ at> (1+e) [ £ dr . (4.51)
t, ~-T =T T -T
in "¢ 0 n'c

Suppose that

t, -T -T t
in "¢ 0 in

e gy fATCE [ 7 o far . (4.52)
In "¢ 0 in "¢ 0

Then, by (4.50), the choice T = T, + T+ t, = 4, would give the Lemma.

Therefore (4.52) cannot hold and so, using also (4.51)
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T
n
T -T
n c

t1n

t1n-Tc-T0

£ At > (1+¢) £ dt > (1+¢)2 £dr . (4.53)

I1n
t1n-Tc-2T°

Now repeat the last few arguments. For each n there exists t, e {0,t4,]

such that
t2n
[ ooy 0T [P o fAn T +2m CE <, . (4.54)
c 0 2n "¢ 0
Observe again that tﬁ: ton ™ ® and that ton <t €T. By (4.53), (4.54)
t T
2n 2 n
It g ogp £AT> (407 [T fav .
2n ‘¢ 0 n'c¢
Analagously to (4.52) now suppose that
t, =T =27 t
2n ¢ 0 2n
f£dr<e [ £ ar .
t2n Tc-3T0 t2n Tc 2To

But the choice T = T+ 210, t, =ty would now result in the Lemma. Hence

tn
cop EAT .
n ¢

tzn
tzn-rc-sro

th 3
£ar> () [T . £4aT> (1+e)
c 0

2n

Proceeding in this fashion yields, remembering how N was picked,

t
[ §1em (4.55)

T T
N n n

. o oyp, £QT> (¥ [O far> 2 [T far
N-1,n 'c 0 n ¢ n

where tN-1,n < Tn' But by (4.47) and (4.55)

tn
£ at

Itﬂ-“ on
T =T
n ¢

£ar> 2 [
tN--‘l,n 2Tc:

which by (4.48) cannot possibly hold. This contradiction gives the Lemma.

S. Proof of Theorem 5. Define p = lim sup ]t 1|Au(f)|2dt, and assume that

tee O
conclusion (1.31) does not hold; then p > 0. Recall the conclusions
+
Au € Li(l H), ue L.(i+,ﬂ) of Theorem 4.

Take any n > 0 such that

3=
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3(1=n) > 2(1+n) ,

Choose sequences E; + ®, tn + ® as n + @ guch that

t t
[™ I1aui®ar > (1-m) Lmoeup £ _ jaui®ar, 1m [® _ jr12areo .

tn-Tn tre t-Tn n+o tn-ZTﬂ
Define g = |a| + p|b'| (see definitions following (4.8)). Fix €5 0
that
1
gﬁg’< 674 ,
1 1
e/“g < X2 (c=c )y K==
1] 2
4uco

(5.1)

(5.2)

such

(5.3)

(5.4)

(where the constants Coe Co § appear in assumptions (1.20), (1.2t)), and

such that there exists a positive integer N satisfying
- -1
clonrac 2,
We claim that there exist sequences Pgn}. fTOn} such that

T <T <27 > £
T &T, <2F , 7 3T,

On n
t -T 1, t
e op -y IMul%ar < €2 [P jaui?ar .
n n On nn

Suppose the claim does not hold. Then in particular

L

-T 1 t
[0 iawl®ars €20 jaufar
t -T -€T t -7
n n n nn
for if not take Th = Tn, TOn = ern. From (5.8) one has

t 1 t
[™ . laulPar> (14€2) [* ag)ar

t -T -€T t -T
nn n n n

however, the following is also true (otherwise take Tn = (1+e)i;.

TOn = ETn)s
tn-Tn.eTn 2 1 tn 2
f - ~ laulTat> e/zf ~ « lAul®ar
t - -2ET t - -
n'n n nn n

=32~

R

(5.5)

(5.6)

(5.7)

(5.8)

..
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Consequently one also has

t 1 t 1 t
[®  _laul®ar> e€2) [P Iaul®ar> (1+€2)2 [™ _ |aui®ar .
t -T -26T t -7 -¢€T t _-T

nn n n n n n n

Proceeding in this fashion one arrives at

t_-T =(N-1)¢€T 1, t

n :‘ - n|Au|2<l'l' > t/z J n - - |Au|2dt
t =T =NE€ET t -T =-(N-1)e€T

nn n nn n

(note that otherwise take 'l'n = 'l'n + (N-1)l.'rn, 'r°n = ern: since by (5.5)

~ ~ e
Ne € 1 we then have '1'n e ['rn,z-rn], TOn > 2 'rn). and

t ) t
[ iawl®ar> +@2)¥ [P jaui®ar (5.9)

t_~T ~NET t -7
nn n nn

But by (5-2’0 (5.5)' (5.9)

2 *n 2 *n 2
201+4m)lim sup [5 _ faulfar > [ _ Iaw®ar> [T laulfarx

tre t-T t =27 t ~T =NeT
n n n nn n

1 t t

> (142" [ (aular> 3 [ _ |aul®ar > 301-wlim sup [5 _ Jaular,
t -7 t -T toe t-T

nn n n n

which cannot hold by (5.1). Thus the claim (5.6), (5.7) is established. It
should be noted that by the above arguments and the fact that Au € Li(l*,n)

one may, without loss of generality, assume

sup IAu(tn-Tn)I < o (5.10)
n

Let {'rn}, {TOn} be sequences satisfying (5.6), (5.7), (5.10) and define

numbers an, a s Bn' bn by

t =T

2 n 2 2 n'n 2

o € - |Aul®dr, a t = -7 |au]“ar , (5.11)
n'n n n On
t t_ =T
n 2 2 nn 2

2 = |lu|“dt, b = |u]“dat .
Bn t 'rn n tn 'rn 'rOn (5.12)
-33=
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Then by (5.7)
1
4
a < @ . (5.13)
Next, take the inner product of (1.1) with u and integrate over
[tn-'l'n, tn] to obtain (4.20). To estimate the convolution terms in (4.20) we

first use (5.12) and then (1.26), (5.13) to obtain

€ t_~T 1
n nn._, . / ,
lftn_,rn(u(‘l’), [0 " pr(r-s)utsiasiat] < Bb |b] < ¢ a8 olb'] . (5.14)
2 BQ
But using the fact that Jul . = {sup =1 lul“at¥2<¢ » ywe also have the

L.(l H) tn
estimate

tn tn.Tn-TOn
1" g Cat), g b* (1-s)u(s)ds)dT]
n n

n S (5o Ton . 2, .Y
<tlf 1 I, (xe)p —p_ D' (T8)] luls)|as)®an
n n k=1 n n On

ftn -z' Itn.mn-TOn
<BI( ( [
n tn-Tn k=1 tn (kﬂ)'rn TOn

1
Ib* ( +=8) | 2as) "2

} (5.15)
: Itn-k'l‘ n-TOn
tn- (k+1 )Tn-TOn

1 1
Iu(s)lzds]/z )2d‘r]/2

© x+(k+1)T

(1
2@, Ton k=0

1 T, +T 1 1
0 On 'n r n.,2 /2,2, ./
< 812 1ut tf Ugnen 1078110072 )%ax)

=o(B), nre J

where the last inequality follows from(4.3), the second part of (5.6) and from
the hypothesis Vv > 3/2 in (1.24). To estimate the other convolution term in

(4.20) observe that (using (5.11), (5.12), (5.13))

-34-

....................................




K4

LELAPRS P & & ol IS

A ams .'

t -T
nn

1
4
t -1 -7 a(t-g)Au(s)as)dar| < ¢ qnsn|.| ’ (5.16)

t
n

Wy g tuto),
nn On

and that repeating the arguments in (5.15) yields

Itn-rn.TOn
0

t
1f,"_p tatn), alt-s)Au(s)ds)at] = o(B), n + = .  (5.17)
nn

From the first part of (5.6), the second part of (5.2), and from (5.12) one
has

t
n
|ftn_,rn(u,!')d‘r| <o(B), n+e= . (5.18)

Returning to (4.20) and using assumption (1.20), as well as (1.23), (5.12),
(5.14) - (5.18) and the fact that Q[un,tnsdb] ? 0 results in the estimate

)
w2

3’2 (a,Au ,t ) > cB - (ztsn)"'|u(1-.“--rm)|2 - 2/4 ag-¢€ (5.19)
where cnoo a8 n *> ®,

Form the inner product of (1.1) by Au and integrate over [tn-'rn, tn]
to obtain (4.29). To estimate the two convolution terms on the left-hand side
of (4.29) we argue as in the preceding paragraphs (see also the proof of

Theorem 4), and we obtain

t
t:_,rn(hu.a*mx + u*dbldr > Q(a.hun.tn)
(5.20)
t 1
- %ﬂ !tn-'r Iu-AuIzdt - f./‘ a:g + o(an), n+e
nn
In addition
t
o —p (FAWNAT=0(a), n += . (5.21)
n'n
Also observe that by (1.28) and (5.10)
def
e = ing (Nu(tn)) - W(\l(tn-'rn))) > =» (5.22)

nbe
Making use of (5.20) ~ (5.22) in (4.29) we obtain, after adding u(c0 Bn)2 to

.........
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both sides

[(Au,Bu) - J—-’- ju-au}? + e 21012 at

t '1'
(5.23)
2, Vo2
+ Q[a,Aun.tn] < -e + u(coah) + t/ ohg + °(°h) P
where c, is the constant in (1.21).
Assume that
£ < xd (5.24)
n n
vhere K is defined in (5.4), and also suppose that
lim a = -, (5.25)

n+e

But (5.3), (5.24), (5.25) imply that the right-hand side of (5.23) is bounded

above by g uﬁ, where § 1is the constant in (1.21). Therefore, as

Q(a,hun,tn) 2 0, we arrive at a violation of (1.21). Thus either (5.24) or

(5.25) is false. First, assume that for some subsequence

-1/
2
an < K Bn H (5.26)
then (5.25) implies
lim f = o (5.27)
nee B

Using (5.4), (5.26), (5.27) and the fact that u € L.(i+,u) to estimate the
right-hand side of (5.19) yields (for n sufficiently large)
2
Q(Q'Aun,tn) b D(co Bn) . (5.28)
Now using (5.3), (5.25), (5.28) in (5.23) again leads to a violation of
(1.21). Thus we must have 1lim inf ah < ®, and, without loss of generality,

noe
we let

sup un { @ (5029)

Therefore, also by (5.24),
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sup B < = . (5.30)
n

By (5.29) we may obviously strengthen (5.10) to

lim IAu(tn-Tn)l = 1lim lu(tn-rn)l =0 |, (5.31)
n+e ne

Thus e > 0 in (5.22).
To complete the proof use e 2 0 in (5.23), and recall that

Q(a,hun,tn) » 0. By (1021)' (503) this gives

2.4y 2
« =33 (coﬂn) . (5.32)

But the assumption p > 0, together with (5.2), (5.32) implies

inf Bn >0 . (5.33)
n

If (5.4), (5.31), (5.32), (5.33) are used in (5.19), one again obtains
(5.28). Substituting (5.28) in (5.23), and using (5.3), e > 0, on? obtains
a contradiction of (1.21). We thus conclude that the assumption p > 0 is
false which yields the desired conclusion (1.31) of Theorem 5.

To prove conclusion (1.32) we begin by defining Fq = F - a*Au ~ u*db.
By assumptions (1.15), (1.26), (1.30) and by conclusion (1.31) one has

un i IF (ifar=0 . (5.34)
£

Next form the inner product of (1.1) with u and integrate over the interval
(t-T4,t], |T1| < 1, to obtain (using (1.20), (1.28), (5.34))

lim  sup (Ju(e)}? - Iu(t-'l‘1)|2) =0 . (5.35)
tro |T1|<1

Finally, combining assumption (1.26), conclusion (1.31), and (5.35) yields

conclusion (1.32) which completes the proof of Theorem 5.

6. Application to Nonlinear Heat Flow in Materials with Memory. We begin

with a formulation of the mathematical model based on the consideration of

energy balance for heat transfer in a body B in R" (n = 1,2,3); for
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simplicity we restrict ourselves to the case n = 1 and only comment on the

more general situation. If e€(t,x) represents the internal energy, E(t,x)

!! . the heat flux, and h(t,x) the external heat supply at time t and position
»:T-:

i:é. x @€ B, the energy balance states that

e

’ et--divai-h (¢t>0, xeB) .
i Consider nonlinear heat flow in a homogeneous bar of unit length of a
o material of "fading memory™ type with the temperature u = u(t,x) maintained
. at zero at the ends x =0 and x = 1. According to the theory for such

' materials developed by Coleman, Gurtin, Noll, Pipkin, MacCamy and Nunziato

o (see e.g., Coleman and Gurtin [6]}, Coleman and Mizel [7], Gurtin and Pipkin
[12), MacCamy (14), (15), Nunziato [18) - also Nohel [16] for a recent
summary) we assume that the history of temperature v(t,x) is prescribed for
t<€0 and 0 < x< 1 with v(t,0) = v(t,1) =0, t € 0, and we assume that
the internal energy € and the heat flux q are functionals (rather than
functions for heat flow in ordinary materials) respectively of the
temperature u and of the gradient of u. A reasonable realization of these
functionals is

e(t,x) = ¢ + bu+ [£_bt-vu(roar , (6.1)

q(t,x) = -x(u ) - [ a(t-7)o(u (T,x))dT , (6.2)

where -o < t < ®, 0 ¢ x < 1., We assume u(t,x) = v(t,x) is the prescribed
history of the temperature for t €0, 0 < x < 1, and that u satisfies
prescribed boundary conditions at x = 0 and x =1 for -® < t < o in
(6.1), (6.2) eo > 0, bo > 0 are given constants, a,b : [0,%) + R are
given, sufficiently smooth functions, x,0 : R + R are assigned,

nondecreasing sufficiently smooth constitutive functions normalized so that

X(0) = g(0) = 0.
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i - In the physical literature (see e.g., Nunziato {18]) it is customary to
define
Blt) = b, + [E b(vdar, t) = a_ + [fa(var
- 0 0 0 0
i as the internal energy and heat flux relaxation functions respectively; thus
{t b(t) = B'(t), a(t) = x'(t). It is then argued, partly on physical grounds,
that the equilibrium heat capacity B(=) > g(0) = bo > 0, and that «x(0) and
x(») are positive; is also usually assumed that
m -t n -%t
b(t) = ¥ be © ., alt) = ) ae ' (6.3)
k=1 Je=1

by, Bk. a ., & > 0. As will be seen the specific forms (6.3) are not needed

for the applications of the mathematical theory.

Letting h : R x [0,1] + R denote the external heat supply, and using
p energy balance (et = ~div q + h), where €, q are given by (6.1), (6.2),
ﬁ shows that the temperature u is governed by the nonlinear Volterra history-

value problem:

' ) 9
- b, a_: * % (!f. b(t=-t)u(t,x)dt) = x(u )
g (6.4)

+ [5, att=1rotu_(1,x))_dt + ht,x)

A BE.T.IiTOTLT,

for e <t <®, 0 <x< 1, where
u(t,x) = v(e,x), -«< £ €0, 0 <x <1 , (6.5)
where it is assumed that the history function v satisfies equation (6.4) in

some precise sense for t € 0. If the ends of the rod are maintained at zero

LS XA R TN

temperature, we adjoin to (6.4), (6.5) the boundary conditions
u(t,0) = u(t,1) 0, =© < £t < =» (6.6)
' To study the evolution of the temperature in the rod for ¢t > 0 means to find

a global extension of the history v such that (6.4) - (6.6) are satisfied
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- under physically reasonable assumptions.

s
S

Upon setting

& Do

F(t,x) = h(t,x) + fg. a(t—t)a(vx(t,x))xdt
(6.7)

Sy lelran T
PR S

-

- Lop(t-Dv(r,x)aT (0 <t < w0 <x <)

.‘.. P '.. '-‘_-'-';f

I. ¥
s A0 !
. e

uo(x) = v(0,x), 0 €x <1 , (6.8)

-.ﬁ»\

the history—-value problem (6.4) - (6.6) reduces to the boundary-initial value

SOV AR ey
AR v,

o problem
)
bo'%% + o¢ (b*u) = x(\xx)x +atolu) +F(0ctcm 0c<cx<t), (6.9)
u(0,x) = uo(x) s, 0 < x €1 (6.10)
“(t,o’ = u(t,1) £0 ’ 0 €t <o (6011)

We shall next apply the abstract global existence, boundedness and
asymptotic resuits (Theorems 2-7) to the model problem (6.9) - (6.11).
Wwithout loss of generality we take the constant bo =1 4in (6.9).

Remark 6.1 While we will restrict the details to one space dimension, we
comment on the situation in two or three dimensions. Let Q be a bounded
domain in R® (for heat flow n =2 or 3) with smooth boundary I and
let u(t,x) denote the temperature at time t and x € §i. 1In the
formulation the internal energy functional € remains unchanged; the heat
flux functional q (6.2) (now a vector in R™) becomes

alt,x) = =A(1VaDVu = [£_ a(t-0 W] Wa(1,x)]) Wl 1,x)a1 (6.2™)
where A, v : R +R are given gmooth functions normalized so that
A(0) > 0, v(0) > 0, Vu is the gradient of u, |°| denotes the Euclidean norm
in R", and the relaxation function a is as before. Applying the energy
balance to (6.1), (6.2") and proceding as before, the mathematical model for

heat flow for n > 1 corresponding to (6.9) - (6.11) becomes
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a“ 'a— t ] [ ] [ J
TR ™ (b*u) = Ve[A(|Vu|)Vu) + a*(Ve[v(]| Wa|u) W) (6.97)

+P(0<Ct<e» xe 1)

u(0,x) = uo(x), xe (6.10™)
u(t,x) =0, xeTl , 0<t<o , (6.117)
The next step is to show that the problem (6.9) - (6.11) can be written
in the abstract form (1.1) and then apply the abstract theory. For this
purpose assume that the constitutive functions Y, ¢ satisfy the assumptions:
xoecm, xo) = o0) =0 , (6.12)
there exist constants B8 > 0, M > 0 such that
0 € 0'(E) CAx'(E) €M< » EEeR ; (6.13)
there exist constants S, >0, Cy > 0 such that
EX(B) > ¢, &, EXD) > c, &, Een . (6.14)
Define the functions Z, I : R + R by
tr) = [0 X(EQE Kx) = [T otE)aE, rer (6.15)

and the functions ¢, ¥ : L2(0,1) + (=w,u] by

1 du 1
Jo SS)ax if u e H_(0,1)
$u) ={ O Tax 0 (6.16)

+e otherwise ,

]; z(%‘,{)dx if ue n;(o,n

¥(u) = (6.17)
4+ otherwise .
It is clear that by (6.14)
c c
g(r) » 2—' r3, I(r) » 2—2 2, renr (6.18)
and ¢, } are well defined, proper, and convex by (6.13) and l.s.c. by
(6.18). Moreover, it is standard that
4 & 1 4 da
3w = - G x(GD, uen(dp = fueno,1; & xdh ertdo,n), (619

-fl=

.......
...........
------




IW(u) = -% o), uenian) = fue H (0,107 & L x® er?o,nl.  (6.20)

Thus the heat flow problem (6.9) ~ (6.11) is of the abstract form (1.1) on the
Hilbert space H = W= W' = L2(0,1) provided we take Au, Bu as respectively
aP(u), I¢(u).
Remark 6.2. Por the multidimensional problem (6.9™) - (6.11") formulated in
Remark 6.1 assume that the constitutive functions A, v satisfy
A(0) > 0, there exists Py > 0 such that ME) > P, and
EA'(E) + AM(E) >p, (EeRr) ,
and similarly for V. Letting H = Lz(ﬂ) and defining
f Al W])ax if uen (2)
$(u) =
+® otherwise ,
where A(r) = f: EME)AE, r € R, we find (see e.g., [16, Remark 2.4))
Bu = 3¢(u) = =Ve(A(|%ul)) where
D(3¢) = {u e B (D) : Vo(AIW])) e L2}
the operator A 1is defined in the same way using the primitive of W Thus
the problem (6.9") - (6.11™) is also of the abstract form (1.1).

It will be shown next how to apply Theorem 2 to deduce existence of
solutions of the model problem (6.9) = (6.11) using assumptions (6.12) -
(6.14). For this purpose we first check the General Assumptions. The
conditions (1.2) - (1.6) are satisfied with the above choice of W, H, ¢ and

¥» To check that condition (1.7) is satisfied observe that

B ? = (x5 o “) ax > L (0 (52 o “) ax = = jau)? (6.21)
dx 3 dx

&

where we have used (6.13). Since IAA?' € |Aaul, A> 0, (recall that A and

also B are assumed single~valued),

I(Bu,Axu)l < |Bu| IAAul < |Bu] |Au| ,
-42-
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and this, together with (6.21) implies
(Bu,A,u) > -BlBul?

which is of the form (1.7), where $ is the constant in (6.13).
Remark 6.3. In Example 2 of [8] which is also a special case of [1.1) with
b 0 the condition (1.7) was shown to hold with 8 = 0. Although B was
then linear the demonstration of this was far from trivial. The above
consideration does however show that provided we satisfy ourselves with
>0 (which is permitted in (1.7)) then the verification of (1.7) is almost
trivial even if B 1s nonlinear. In fact, it is not obvious to us how (1.7)
with B = 0 could be verified in the case when both A and B are
nonlinear.

The compactness condition (1.8) is clearly satisfied in L2(0,1) by

(6.16), (6.18), from which it follows that |¢(u)| bounded implies tg& 2

L
bounded.
To see that the condition (1.13) is satisfied under our assumptions
observe that (6.13) implies ’
2 2 2 2
LR T I ' LI T I
(Au,Bu) = [o o' () x' (3 (55) ax > 5 [lo G (53) ax
ax dx
(6.21)
1 2
8 |lAul® .
Also
B(0) (Au,w) > b(0)e, P lul? (6.22)

by using integration by parts, (6.14), and the Poincareé inequality. A routine
calculation now shows that (1.13) is satisfied with v = Au, w = Bu if
b(o) <2 "L,

If all the above assumptions are satisfied, if the kernel a satisfies

conditions (a), if the kernel b satisfies assumption (1.11) (which is the
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Ef; case for the special case of a, b in (6.3) - see Proposition a in (8], also
Eii in more general cases than (6.3)), if Db(0) >0, and if r e w};l(n’,n),

) u, e D(¢) N D(Y), then according to Theorem 2 the problem (6.9) - (6.11) has
a solution u satisfying the conclusions of Theorem 2 with v = Au, w = Bu.
No claim is made that this solution is unique.

To verify the applicability of Theorem 3 to the physical problem we
observe first that (1.20) is satisfied with c¢ = 0112 by (6.14). PFrom
(6.21), (6.22) now follows that (1.21) is satisfied if
(1) u(c1l2)2 - 2%21 + b(o)czw2 >0 .
and

(11) b(0) < 28"
hold. Concerning the condition (i) we note that if czlz >'% then, as
B(0) >0, it is trivially satisfisd. If c,¥ < then (i) requires u to
be sufficiently large compared to Db(0).

Then under the above conditions, the conclusions of Theorem 3 hold for
solutions of (6.9) - (6.11), provided the kernels a, b satigfy (1.15) -
(1.17) (trivially true for the special kernels (6.3), but also true for large
classes of other kernels), and provided F € Lz(lf,ﬂ).

To check the hypotheses and applicability of Theorem 4 to (6.9) - (6.11)
we note that (1.24) is trivially satisfied for the special kernels (6.3), but
is also true for many other kernels also satisfying (1.15) = (1.17). Thus one
only has to check (1.26). For this purpose we add the hypothesis

o'(E) €>0 for some €> 0, £eR (6.23)
to (6.13); then
ol = [t @0 > @ ] o

By an easy variant of Lemma A.2 in (17} (here u satisfies zero boundary

..............
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conditions at x = 0, 1 instead of periodic boundary conditions; the mean
value of u = 0 in [17] is not used - instead use the Poincaré inequality)

one concludes

2
A8 a5 2 1 @20 5 26 [ wiixiax .
0 2 0 ‘ax 0

Thus |Aul > /2 ex |u|l if (6.23) holds, and (1.26) is satisfied with
p= (/5 el)-‘l Thus under all of our assumptions the conclusions of Theorem 4
hold for solutions of (6.9) - (6.11) if one takes F € Li(i+,u) in (6.9).

For the application of Theorem 5 we only require that P in (6.9)
satiasfy the weak hypothesis (1.30).

For the application of Theorems 6 and 7 to the problem (6.9) - (6.11)

define F(®) = F(x) = lim F(t,x) in (6.9); we remark that for the special
e

case of F defined by (6.7) arising from the history-value problem (6.4),
(6.5)

P(®) = h(x) = lim h(t,x) ,

tom

under our assumptions concerning the kernels a and b, where h(t,x)
represents external heat supply. Since assumption (6.14) implies that both of
the single-valued operators A, B defined by (6.19) and (6.20) are coercive
and since f: a(t)dt > 0, the limit equation (1.33) has a unique solution
u(®), provided F(x) e L2(0,1). To apply Theorem 6 we only impose
agsumptions (1.37); these are trivial for the special cases of a, b in (6.3)
(but satisfied for more general kernels). The application of Theorem 7 is
equally routine. This completes our discussion.
Remark 6.4. It is clear from the above analysis of the model problem (6.9) -

(6.11), that a similar application of the general theory can be made to the

multidimensional problem (6.9") - (6.11") described in Remarks 6.1, 6.2.
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